Instability of martingale optimal transport in dimension d≥2
نویسندگان
چکیده
Stability of the value function and set minimizers w.r.t. given data is a desirable feature optimal transport problems. For classical Kantorovich problem, stability satisfied under mild assumptions in general frameworks such as one Polish spaces. However, for martingale problem several works based on different strategies established results Ronly. We show that restriction to dimension d=1 not accidental by presenting sequence marginal distributions R2 which neither stable nor minimizers. Our construction adapts any d≥2. d≥2 it also provides contradiction Wasserstein inequality Jourdain Margheriti d=1.
منابع مشابه
Martingale Optimal Transport
The original transport problem is to optimally move a pile of soil to an excavation. Mathematically, given two measures of equal mass, we look for an optimal map that takes one measure to the other one and also minimizes a given cost functional. Kantorovich relaxed this problem by considering a measure whose marginals agree with given two measures instead of a bijection. This generalization lin...
متن کاملMartingale Optimal Transport with Stopping
We solve the martingale optimal transport problem for cost functionals represented by optimal stopping problems. The measure-valued martingale approach developed in ArXiv: 1507.02651 allows us to obtain an equivalent infinitedimensional controller-stopper problem. We use the stochastic Perron’s method and characterize the finite dimensional approximation as a viscosity solution to the correspon...
متن کاملMartingale Optimal Transport in the Skorokhod Space
The dual representation of the martingale optimal transport problem in the Skorokhod space of multi dimensional càdlàg processes is proved. The dual is a minimization problem with constraints involving stochastic integrals and is similar to the Kantorovich dual of the standard optimal transport problem. The constraints are required to hold for very path in the Skorokhod space. This problem has ...
متن کاملMartingale optimal transport and robust hedging
The martingale optimal transport problem is motivated by model-independent bounds for the pricing and hedging exotic options. In the simplest one-period model, the dual formulation of the robust superhedg-ing cost differs from the standard optimal transport problem by the presence of a martingale constraint on the set of coupling measures. The one-dimensional Brenier theorem has a natural exten...
متن کاملSimulations of transport in one dimension
Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2022
ISSN: ['1083-589X']
DOI: https://doi.org/10.1214/22-ecp463